Abstract

AbstractThe local transmission of chiral information by noncovalent interactions is one of the most fundamental processes broadly found in nature, i.e. in complex biochemical systems. This review summarizes our accomplishments in investigating chiral induction in stereodynamic ligands and catalysts by weak intermolecular interactions. It includes our efforts to characterize numerous stereodynamic compounds in detail with respect to their thermodynamic and kinetic properties. Furthermore, many stereolabile ligands for enantioselective catalysis are described, where directed stereoinduction afforded highly enantio- or diastereoenriched catalysts for subsequent selective asymmetric transformations. Various approaches for the dynamic enrichment of one of the catalyst’s conformers are presented, such as noncovalent interaction of the ligand with a chiral environment or a chiral solute. Finally, successful chemical systems are presented in which a process of chiral induction can be coupled with an autoinductive mechanism triggered by the chirality of its own reaction product, realizing Nature-inspired feedback loops resulting in self-amplifying, enantioselective catalytic reactions.1 Introduction2 Mapping the Stereodynamic Landscape3 Chiral Induction by Noncovalent Interactions4 Autoinduction and Chiral Amplification5 Self-Alignment and Emergence of Chirality6 Conclusion

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call