Abstract
<p>Tropical cyclone (TC) genesis frequency over the western North Pacific (WNP) is reduced significantly since the late 1990s, coinciding with a Pacific decadal oscillation (PDO) phase change from positive to negative. In this study, the underlying mechanism for this reduction is investigated through analysis of asymmetric central Pacific (CP) El Niño-Southern Oscillation (ENSO) properties induced by the negative PDO phase. Results suggest that the significant reduction is caused by asymmetric CP ENSO properties, in which the CP La Niña is more frequent than the CP El Niño during negative PDO phases; furthermore, stronger CP La Niña occurs during a negative PDO phase than during a positive PDO phase. CP La Niña (El Niño) events generate an anticyclonic (cyclonic) Rossby wave response over the eastern WNP, leading to a significant decrease (increase) in eastern WNP TC genesis. Therefore, more frequent CP La Niña events and the less frequent CP El Niño events reduce the eastern WNP mean TC genesis frequency during a negative PDO phase. In addition, stronger CP La Niña events during a negative PDO phase reinforce the reduction in eastern WNP TC genesis. The dependency of CP ENSO properties on the PDO phase is confirmed using a long-term climate model simulation, which supports our observational results. </p><p>Acknowledgements: This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT; No. 2019R1A2C1008549).</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.