Abstract

The thermal (E)/(Z)-isomerization of 3-methyl-4-pyrimidinimine, 3MePMI, has been studied in the gas phase at MP2/6-31G* and with the inclusion of medium effects using the polarizable continuum method, PCM(MP2/6-31G*), and the solvation model density method, SMD(MP2/6-31G*). For the free molecule and for 3MePMI in each of 14 solvents, the structures were determined of the (E)- and (Z)-isomers, of the transition state structure for isomerization ITS by asymmetric N-inversion, and of the second-order saddle point structure (SOSP) associated with in-plane N-inversion. The results predict a reduction of the (E)-isomer preference energy of 3MePMI, an increase of the deformation energy ΔE(def) = E(SOSP) - E(ITS), and an increase of the activation barrier E(act)(Z → E) with increasing solvent polarity. Electronic effects associated with N-inversion are analyzed using molecular orbital theory, results of population analysis, and electrostatic potential maps. The molecular dipole moments are superior parameters for the description of electronic relaxation in the imine basin during N-inversion. In particular, the analysis of dipole moments explains the compatibility of the increase of local CN polarity during N-inversion with the negative solvation effect on the activation barrier.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call