Abstract

Radioactive counterions were used to track the ratio of positive to negative polymer repeat units within a polyelectrolyte multilayer made from poly(diallyldimethylammonium chloride), PDADMAC, and poly(styrene sulfonate), PSS. For this widely employed pair of "linearly" assembled polyelectrolytes it was found that the accepted model of charge overcompensation for each layer is incorrect. In fact, overcompensation at the surface occurs only on the addition of the polycation, whereas PSS merely compensates the PDADMAC. After the assembly of about a dozen layers, excess positive sites begin to accrue in the multilayer. Treating the surface as a reaction-diffusion region for pairing of polymer charges, a model profile was constructed. It is shown that different reaction-diffusion ranges of positive and negative polyelectrolyte charge lead to a blanket of glassy, stoichiometric complex growing on top of a layer of rubbery, PDADMAC-rich complex. Though overcompensation and growth was highly asymmetric with respect to the layer number, entirely conventional "linear" assembly of the multilayer was observed. The impact of asymmetric growth on various properties of multilayers is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.