Abstract
Since the molecular self-assembly of nanomaterials is sensitive to their surface properties, the molecular packing structure on the surface is essential to build the desired chemical and physical properties of nanomaterials. Here, a new nanosurfactant is proposed for the automatic construction of macroscopic surface alignment layer for liquid crystal (LC) molecules. An asymmetric nanosurfactant (C60 NS) consisted of mesogenic cyanobiphenyl moieties with flexible alkyl chains and a [60]fullerene nanoatom is newly designed and precisely synthesized. The C60 NS directly introduced in the anisotropic LC medium is self-assembled into the monolayered protrusions on the surface because of its amphiphilic nature originated by asymmetrically programmed structural motif of LC-favoring moieties and LC-repelling groups. The monolayered protrusions constructed by the phase-separation and self-assembly of asymmetric C60 NS nanosurfactant in the anisotropic LC media amplify and transfer the molecular orientational order from surface to bulk, and finally create the automatic vertical molecular alignment on the macroscopic length scale. The asymmetric C60 NS nanosurfactant and its self-assembly described herein can offer the direct guideline of interface engineering for the automatic molecular alignments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.