Abstract

In this paper, an investigation into an alternative topology for reluctance synchronous machine rotor flux barriers is presented. The investigated topology employs a high number of flux barrier variables with an alternative asymmetric rotor structure. The focus in this paper is on maximizing average torque and minimizing torque ripple, using finite element-based design optimization, in order to study the possibility of achieving acceptably low torque ripple. A subsequent investigation into the effect of rotor skew on the proposed optimized design to reduce torque ripple even further is also conducted, as well as the manufacturing and testing of the proposed flux barrier prototype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.