Abstract

Here, asymmetric free vibration characteristics and thermoelastic stability of functionally graded circular plates are investigated using finite element procedure. A three-noded shear flexible plate element based on the field-consistency principle is used. Temperature field is assumed to be a uniform distribution over the plate surface and varied in thickness direction only. Material properties are graded in the thickness direction according to simple power law distribution. For the numerical illustrations, aluminum/alumina is considered as functionally graded material. The variation in critical buckling load is highlighted considering gradient index, temperature, radius-to-thickness ratios, circumferential wave number and boundary condition of the plate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call