Abstract

As a green and sustainable method for ammonia production, solar photocatalytic nitrogen fixation (PNRR) provides a new approach to slowing down the consumption of non-renewable energy resources. Given the extremely huge energy required to activate inert nitrogen, a rational design of efficient nitrogen fixation catalytic materials is essential. This study constructs defective Ti3+-Ti3C2Ox to regulate the NH2-MIL-101(Fe) reduced layer-FeII 'electron' transition; meanwhile, the heterojunction interface electronic structure formed by coupling promotes catalytic charges' transfer/separation, while the interface-asymmetric Fe-O2-Ti structure accelerates the response with nitrogen. It is shown that the heterojunction NM-101(FeII/FeIII)-1.5 exhibits a 75.1 % FeII enrichment (FeII:FeIII), which successfully impedes the fouling relationship between the two (FeII/FeIII). Mössbauer spectroscopy analysis demonstrates that the presence of D1-high spin state FeIII and D2-low/medium spin state FeII structures in the heterojunction boosts the PNRR activity. Furthermore, it is found that the defective state Ti3+-Ti3C2Ox modulation enhances the reduced nitrogen fixation capacity of the heterojunction (CB = -0.84 eV) and decreases the interfacial charge transfer resistance, yielding 450 umol·g−1·h−1 ammonia. Furthermore, this study modulates the charge ration of the catalyst reduction layer by constructing a charge-asymmetric structure with Ti3+-deficient carriers; this method provides a potential opportunity for enhancing photocatalytic nitrogen fixation in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call