Abstract

Apatite fission track data combined with regional geological observations indicate that the uplift of the Transantarctic Mountains has been coeval with thinning and subsidence of the crust beneath the Ross Embayment. In the Dry Valleys region of south Victoria Land, the mountains have been uplifted about 5 km since the early Cenozoic at an average rate of about 100 m/Ma. During uplift, the crust remained at constant thickness or was slightly thickened by magmatic underplating. In contrast, the crust beneath the Ross Embayment has been extended and consequently thinned beginning in the Late Cretaceous but mainly during Cenozoic times. We suggest here that the uplift of the Transantarctic Mountains and the subsidence of the Ross Embayment are a result of passive rifting governed by a fundamental structural asymmetry defined by a shallow crustal penetrative detachment zone that dips westward beneath the Transantarctic Mountain Front. The localization and asymmetry of this detachment and its unusually deep level expression are attributed to a profound crustal anisotropy inherited from an early Palaeozoic collision along the present site of the mountain range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.