Abstract

Canna indica is a common ornamental plant with asymmetric flowers having colourful petaloid staminodes. The only fertile stamen comprises a one-theca anther and a petaloid appendage and represents the lowest stamen number in the order Zingiberales. The molecular mechanism for the asymmetric androecial petaloidy remains poorly understood. Here, we studied the identity specification in Canna stamen. We observed four types of abnormal flower in terms of androecium identity transformation and analysed the corresponding floral symmetry changes. We further tested the expression patterns of B- and C-class MADS-box genes using in situ hybridization in normal Canna stamen. Homeotic conversions in the androecium were accompanied by floral symmetry changes, and the asymmetric stamen is key in contributing to the floral asymmetry. Both B- and C-class genes exhibited higher expression levels in the anther primordium than in other androecial parts. This asymmetric expression pattern precisely corresponded to the asymmetric identities of the Canna androecium. We identified C. indica as a model species for studying androecial organ identity and floral symmetry synthetically in Zingiberales. We hypothesized that homeotic genes specify floral organ identity in a putative dose-dependent manner. The results add to the current understanding of organ identity-related floral symmetry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.