Abstract

Abstract This paper introduces a new form of energy-harvesting suspension that is integrated in a hydraulically interconnected suspension (HIS) system. The combined energy-harvesting and hydraulic interconnection features provide improved energy efficiency and vehicle dynamics performance. A half car model and a full car model are developed to validate the effectiveness of this design. Different dynamic input scenarios are used for model simulation, which includes single-wheel sinusoidal input, two-wheel sinusoidal input and double lane change test. The system performs better than a conventional suspension system in rolling dynamics in the cases of the single-wheel road input and double lane change test. The heaving dynamics is dependent on the frequency of the road input. The energy harvesting can generate up to 421 w at 4 Hz and 40 mm (peak to peak) road input.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call