Abstract

This review is devoted to the theoretic and synthetic aspects of asymmetric electrophilic substitution reactions at the stereogenic phosphorus center. The stereochemistry and mechanisms of electrophilic reactions are discussed—the substitution, addition and addition-elimination of many important reactions. The reactions of bimolecular electrophilic substitution SE2(P) proceed stereospecifically with the retention of absolute configuration at the phosphorus center, in contrast to the reactions of bimolecular nucleophilic substitution SN2(P), proceeding with inversion of absolute configuration. This conclusion was made based on stereochemical analysis of a wide range of trivalent phosphorus reactions with typical electrophiles and investigation of examples of a sizeable number of diverse compounds. The combination of stereospecific electrophilic reactions and stereoselective nucleophilic reactions is useful and promising for the further development of organophosphorus chemistry. The study of phosphoryl group transfer reactions is important for biological and molecular chemistry, as well as in studying mechanisms of chemical processes involving organophosphorus compounds. New versions of asymmetric electrophilic reactions applicable for the synthesis of enantiopure P-chiral secondary and tertiary phosphines are discussed.

Highlights

  • Electrophilic reactions are one of the main types of transformations in the chemistry of trivalent phosphorus compounds [1,2,3]

  • Electrophilic asymmetric catalysis, which allows one to obtain a number of chiral substances that are difficult to access by other methods, is of particular interest

  • Asymmetric electrophilic reactions are of increasing interest to synthetic chemists

Read more

Summary

Introduction

Electrophilic reactions are one of the main types of transformations in the chemistry of trivalent phosphorus compounds [1,2,3]. Many chiral ligands that are derivatives of trivalent phosphorus (DIOP, DuPhos, PAMP, DIPAMP, etc.) and catalysts generated based on them were obtained using electrophilic reactions of alkylation, arylation and so forth [2,6]. Electrophilic reactions proceed with retention of absolute configuration at the chiral phosphorus center unlike to nucleophilic SN2(P) reactions, which, as a rule, proceed with inversion of absolute. Phosphine-boranes react with alkali metals to form lithium, sodium or potassium derivatives, which undergo electrophilic substitution at phosphorus when interact with electrophiles (Equation (13)). Studies of the mechanism and stereochemistry of the Michaelis–Arbuzov reaction showed that itatAritattrheitatAlpcsacctrhtirhrlktelcaohoivlkhibreeckveckoovlnniaboonouotocraxonaslc.fiuxncaatsxnzleSyxislaSiaeSpyglrzsseyIonositpyrtbnrnttisopuunphivpubntssubhstotvthrhdgosohdttodoorsnaoshoorripnoerifnositepfouepoeesseaiohtspafsohsauppwasshfpcafohtntbnoocthhptooohottawsotoioetsowfsiowmofsptfoiaxnonmpsaomooptnntthtnottloihiffhmhnhhauiuttoisoosueeoouehseogostotmrotffstamerrtefecamumrfmamfaducgasouwgcsgpacsgha:eeselneesseosahelkihelidcsaackc,ttankrlsoias:hothhahltaoarlt:ofa:tt.xaattaishaaialt.xoaht.naxagIypntonlnoenpIytmnlIyetiumhnptikimnnihtasgihsfitsrotyghnhggmhomltmrhaetrrklrhoteorchsesteuroacyhofcisopetueaaafaooisufopulnansirphnnpimnnnnrnptsrlahephtiaddsaidesttanettxdioataiaagtoxanixarsitsastlfelisnsettimsteifttifntfnstoesttta,fdeiotefcseahestinosatfiogrprutnraer(tnhgseegrgaedwreEfaerggldeegordwogeaa,oogpeqee,ice,encerctdceth,aueihtdhlh,htaedhtd,ahentohaheeeetehaetceausthmeapdhmlaptmneiappelepnrceonaeeskhelliocahilianiklesiaylseinsotseipraoeitncayrtnlrtoltrtrcs(lkhrctorelrtrl3ytkphptrykturyryoianrrh5oryolaahehyoasomflios)apomflolcmifli)pfipafhllnlfhsodrhii[fthehtohpoatedcef4ihrtlofeaahilralehaleirle9elseiemaliedloceleciceecid–sicitcecpudtcxeMsid5tuMeirpufiM(airleor1eetrEedlaoirlcecoeanea]aeicalroiqaeaakc.cleaarchnlcreotcl.eunhcencnhctlhadnocefetnciytadtauadeiotTereifudatueotreoclorpwndihcsioalcpfncollopnnsihoslieaenlsishno–neshhsetooror–stos–AohfosoMbmoeaptsfA(fApseapr3olsprlchaipaaerilerpbh5nlrhodhceicebeotahb)uilhcymhiaicieaoa)liudsluionazicaldraindsp[cnzsiprcnezcobr4pesoaesbeoeobolvaol9aentecooovimovtttn–otscitorttfoanxttnfet5–ioaxyeroapxircifoayy1ecAacidlercikoldlcaadk]tlceakktecutr.hatltecchtoeccho.oblhioelnteo.oytoo.eflmeixunTeifdymfomnToaTywczthapnafnwihwaphpofsopohefiooherhohevsthrinsiaobuhrtthamMrohauolhuhmMomMnrloiowlocsnidenianiadfdwcpodawicdaaietedcoatcetmhihetacdwerhioembhiiwatowtiodoiodianpvisoatoieonnonpnitheoialemlntthnttenililahlhlhuhisteouetitstooaas–teoatmoonfota–oa–eitfetffftt Arertbeunztioovnroefaactbisoonluotfecchoirnafligpuhroastpiohninaitetshewpithhoaslpkhyol rhuasliadteosmpr(Eocqeueadtsiosnte(r3e5o)s)p[4e9ci–f5ic1a].lly with complete retention of absolute configuration at the phosphorus atom (Equation (35)) [49,50,51]. TabTleab4l.e T4.hTehreeraecaticotinonofofrarcaecmemicicteterrttiaiarryypphhoosspphhiinneess wwiitthh eennaannttiioommeerricicaalllylyppuurere(1(S1,S2,R2R)-)O-O-(t-e(tretr-tbutyldimethylsilyl)bisuotbyoldrinmyle-t1h0y-slsuillfyol)niysloabzoidrne y(El-q1u0-astuiolfnon(1y0l8a)z)i.de (Equation (108))

93 SP 93 94 RP
Addition to Multiple Bonds
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call