Abstract

Protein p7 of hepatitis C virus (HCV) is a short 63 amino acid membrane protein which homo-oligomerises in the lipid membrane to form ion and proton conducting bundles. Two different genotypes (GTs) of p7, 1a and 5a, are used to simulate hexameric bundles of the protein embedded in a fully hydrated lipid bilayer during 400ns molecular dynamics (MD) simulations. Whilst the bundle of GT 1a is based on a fully computational derived structure, the bundle of GT 5a is based on NMR spectroscopic data. Results of a full correlation analysis (FCA) reveal that albeit structural differences both bundles screen local minima during the simulation. The collective motion of the protein domains is asymmetric. No ‘breathing-mode’-like dynamics is observed. The presence of divalent ions, such as Ca-ions affects the dynamics of especially solvent exposed parts of the protein, but leaves the asymmetric domain motion unaffected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.