Abstract

We experimentally report on asymmetric dwell-time statistics of polarization chaos dynamics generated from free-running vertical-cavity surface-emitting lasers (VCSELs). Theoretically, we explain this behavior by introducing a misalignment between the phase and amplitude anisotropy within the spin-flip model for VCSELs. It induces an asymmetry in the VCSEL polarization behavior which is then responsible for significant changes in the statistics of the chaotic mode-hopping with an increase in the average residence time and an inversion of the dominant mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call