Abstract

The distribution of retinal ganglion cells (RGCs) in goldfish was determined by removing an eye and applying cobaltous-lysine to the optic nerve for 24 hr. This procedure allowed the cobalt label to be in continuous contact with the cut ends of the optic axons and thereby backfilled many RGCs. RGC density was determined across three different sizes of retinae by using fish with different eye sizes. Confirming earlier work, we found that RGC density diminished as retinal area increased. However, irrespective of the retinal size, the density of RGCs was elevated along the temporal boundary between the dorsal and the ventral retina. A conservative estimate indicated that the RGC density in the temporal retina was at least 1.8-2.5 times higher than the mean RGC density of the entire retina. Thus, the goldfish retina does not appear to have a homogeneous distribution of RGCs as was previously considered. Small and large retinae differed with respect to the percentage of cells in the RGC layer that was RGCs. In small retinae, even when the noncobalt-filled cells (glia and displaced amacrine cells) were added to the cobalt-filled RGCs, the density of all cell types was elevated in the temporal retina relative to the remainder of the retina. Furthermore, in small retinae, the percentage of cells in the RGC layer that was RGCs (75%) was constant across the radial and circumferential aspects of the retina. In marked contrast, in medium-large retinae, a homogeneous distribution of cells across the entire retina resulted when the noncobalt-filled cells were added to the cobalt-filled cells. However, the percentage of cells that was cobalt-filled RGCs was significantly greater in the temporal retina (50%) than in the remainder of the retina (35%). In large retinae, as in small retinae, the percentage of cells that was RGCs did not vary as a function of distance from the optic disc. These data suggest that, in the course of retinal maturation, cell density in the temporal retina is elevated initially and then declines subsequently to the level of the surrounding retina. Over time, more displaced to the level of the surrounding retina. Over time, more displaced amacrine cells may be added to the tissue surrounding the temporal retina. Alternatively, more RGCs outside the temporal retina may become displaced amacrine cells. Such events could account for the growth-associated, disproportionate decrease in the percentage of cells that is RGCs in the tissue surrounding the temporal retina.(ABSTRACT TRUNCATED AT 400 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.