Abstract

We have investigated by electron spin resonance, at 37 degrees C, the outside-inside passage and the equilibrium distribution of spin-labeled phospholipids, respectively, in ATP-containing ghosts, in heat-treated erythrocytes, and in heat-induced vesicles. The heat-treated vesicles were spectrin depleted to approximately 25% of the original content and had lost almost 100% of the other cytoskeletal proteins. Yet the vesicles, as long as they contained ATP, were capable of translocating the aminophospholipids with the same efficiency as the heat-treated erythrocytes, and almost with the same efficiency as ATP-containing ghosts. In the vesicles, sphingomyelin and phosphatidylcholine analogues underwent a very slow transverse diffusion as in native cells. We conclude that spectrin and other cytoskeleton proteins are not major factors for the establishment and maintenance of phospholipid asymmetry in human erythrocytes, which may be chiefly due to the aminophospholipid translocase activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call