Abstract

The Infrared Object Tracking (IOT) task aims to locate objects in infrared sequences. Since color and texture information is unavailable in infrared modality, most existing infrared trackers merely rely on capturing spatial contexts from the image to enhance feature representation, where other complementary information is rarely deployed. To fill this gap, we in this article propose a novel Asymmetric Deformable Spatio-Temporal Framework (ADSF) to fully exploit collaborative shape and temporal clues in terms of the objects. Firstly, an asymmetric deformable cross-attention module is designed to extract shape information, which attends to the deformable correlations between distinct frames in an asymmetric manner. Secondly, a spatio-temporal tracking framework is coined to learn the temporal variance trend of the object during the training process and store the template information closest to the tracking frame when testing. Comprehensive experiments demonstrate that ADSF outperforms state-of-the-art methods on three public datasets. Extensive ablation experiments further confirm the effectiveness of each component in ADSF. Furthermore, we conduct generalization validation to demonstrate that the proposed method also achieves performance gains in RGB-based tracking scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.