Abstract

We propose a theory in which the Standard Model gauge symmetry is extended by a new $SU(2)_\ell$ group acting nontrivially on the lepton sector which is spontaneously broken at the TeV scale. Under this $SU(2)_\ell$ the ordinary leptons form doublets along with new lepton partner fields. This construction naturally contains a dark matter candidate, the partner of the right-handed neutrino, stabilized by a residual global $U(1)_\chi$ symmetry. We show that one can explain baryogenesis through an asymmetric dark matter scenario, in which generation of related asymmetries in the dark matter and baryon sectors is driven by the $SU(2)_\ell$ instantons during a first order phase transition in the early universe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.