Abstract

Based on the deformation and damage characteristics of the surrounding rock in a large-section gob-side entry retaining and combined with field observations and an analysis of the dominant factors, an overall deformation control plan is formulated. The plan mainly includes a structure of high strength, high stiffness and high ductility for roadside support; the reinforcement of the roadway-in support; and the setup entry hydraulic fracturing pressure release mechanism and advanced long, horizontal borehole “fracturing-jet” pressure relief technology. Industrial field tests were completed taking Tangan coal mine as the engineering background. The research shows that the large-section gob-side entry retaining has the typical “asymmetric” overall deformation and damage characteristics, including top coal sinking along the inner side of the roadside support, the whole roadside support structure skewing, and even splitting damage; floor heaving; and the coal-side bolt support structure basically losing support ability and bulging out from the coal side. The dominant factors of deformation damage are disintegration of the floor mudstone by water and deflection deformation under horizontal stress, splitting damage in the concrete roadside support under asymmetric load, damage and expansion due to the insufficient strength of the coal side support, strong dynamic pressure on the roof, and the mutual influence of support and pressure relief. The industrial test shows that the deformation control scheme optimizes the stress environment of the gob-side entry retaining space, the deformation control effect is remarkable, and the roadside fully meets the reuse requirements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call