Abstract
This paper addresses a problem in the hashing technique for large scale image retrieval: learn a compact hash code to reduce the storage cost with performance comparable to that of the long hash code. A longer hash code yields a better precision rate of retrieved images. However, it also requires a larger storage, which limits the number of stored images. Current hashing methods employ the same code length for both queries and stored images. We propose a new hashing scheme using two hash codes with different lengths for queries and stored images, i.e., the asymmetric cyclical hashing. A compact hash code is used to reduce the storage requirement, while a long hash code is used for the query image. The image retrieval is performed by computing the Hamming distance of the long hash code of the query and the cyclically concatenated compact hash code of the stored image to yield a high precision and recall rate. Experiments on benchmarking databases consisting up to one million images show the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.