Abstract

In recent years, correntropy has been successfully applied to robust adaptive filtering to eliminate adverse effects of impulsive noises or outliers. Correntropy is generally defined as the expectation of a Gaussian kernel between two random variables. This definition is reasonable when the error between the two random variables is symmetrically distributed around zero. For the case of asymmetric error distribution, the symmetric Gaussian kernel is however inappropriate and cannot adapt to the error distribution well. To address this problem, in this brief we propose a new variant of correntropy, named asymmetric correntropy, which uses an asymmetric Gaussian model as the kernel function. In addition, a robust adaptive filtering algorithm based on asymmetric correntropy is developed and its steady-state convergence performance is analyzed. Simulations are provided to confirm the theoretical results and good performance of the proposed algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.