Abstract

A single channel asymmetric color image encryption scheme is proposed that uses an amplitude- and phase- truncation approach with interference of polarized wavefronts. Instead of commonly used random phase masks, wavelength-dependent structured phase masks (SPM) are used in the fractional Fourier transform domain for image encoding. The primary color components bonded with different SPMs are combined into one grayscale image using convolution. We then apply the amplitude and phase truncation to the fractional spectrum, which helps generate unique decryption keys. The encrypted image bonded with a different SPM is then encoded into a polarization selective diffractive optical element. The proposed scheme alleviates the alignment problem of interference and does not need iterative encoding and offers multiple levels of security. The effect of a special attack to the proposed asymmetric cryptosystem has been studied. To measure the effectiveness of the proposed method, we calculated the mean square error between the original and the decrypted images. The computer simulation results support the proposed idea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.