Abstract

Employing seawater splitting systems to generate hydrogen can be economically advantageous but still remains challenging, particularly for designing efficient and high Cl- -corrosion resistant trifunctional catalysts toward the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). Herein, single CoNC catalysts with well-defined symmetric CoN4 sites are selected as atomic platforms for electronic structure tailoring. Density function theory reveals that P-doping into CoNC can lead to the formation of asymmetric CoN3 P1 sites with symmetry-breaking electronic structures, enabling the affinity of strong oxygen-containing intermediates, moderate H adsorption, and weak Cl- adsorption. Thus, ORR/OER/HER activities and stability are optimized simultaneously with high Cl- -corrosion resistance. The asymmetric CoN3 P1 structure based catalyst with boosted ORR/OER/HER performance endows seawater-based Zn-air batteries (S-ZABs) with superior long-term stability over 750 h and allows seawater splitting to operate continuously for 1000 h. A self-driven seawater splitting powered by S-ZABs gives ultrahigh H2 production rates of 497μmol h-1 . This work is the first to advance the scientific understanding of the competitive adsorption mechanism between Cl- and reaction intermediates from the perspective of electronic structure, paving the way for synthesis of efficient trifunctional catalysts with high Cl- -corrosion resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call