Abstract

The structure of soft matter systems at interfaces is of utmost importance in the fields of nanopatterning and self-assembly. It has been shown that lamellar and hexagonal patterns can form on interfaces, for a wide variety of systems. The asphericity of charged domains is considered here for different strengths of the electrostatics, determined by the interface media, relative to the short range van der Waals interactions between the molecular components. The phase behavior of the surface structure is explored by using molecular dynamics simulations, including some dynamical aspects of the interaction between neighboring domains, using the Lindemann criterion [F. Lindemann, Z. Phys. 11, 609 (1910)]. The charge ratio of the electrostatic components influences the shape of the domains, as well as the degree of local order in the interdomain structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.