Abstract

There are several cortical areas related to the limbic system that form the output from the hippocampal formation whose cellular and morphological features are important for the onset and progression of AD. We hypothesized that there would be a significant difference in the size of cortical pyramidal neurons and that there would also be a hemispheric asymmetry between Alzheimer disease patients and controls. These differences would potentially be accompanied by an increase in the numbers of Fluoro-Jade B-positive degenerating cortical neurons and a corresponding decrease in the numbers of DAPI-stained cortical neuronal nuclei in subjects with AD compared to controls. Such changes could potentially be used as another marker in postmortem neuropathological diagnosis of AD. We measured absolute numbers of DAPI and Fluoro-Jade B stained cells in five cortical areas of the limbic system and four subareas of planum temporale in the post-mortem brains of subjects with Alzheimer disease. We also measured the size of pyramidal neurons in layer III in the five cortical areas of the limbic system in these subjects. All measurements were performed separately for the left and right hemisphere in order to identify asymmetries between the two hemispheres. We observed a significant decrease in numbers of DAPI stained cells in layers IV-VI of the anterior cingulate gyrus on the right side, in layers I-III of the posterior cingulate gyrus on the left side, in layers IV-VI in the transition region from superior temporal gyrus into planum temporale on the right and in layers IV-VI in the transition from planum temporale to insular cortex on the left. We also observed a significant increase in the numbers of Fluoro-Jade stained cells in layers I-III of the anterior cingulate gyrus and in layers I-III on the left and layers IV-VI of the right gyrus of Heschl. Shortening of the size of layer III pyramidal neurons in subjects with Alzheimer´s disease was found in the anterior cingulate gyrus on the right, in the posterior cingulate gyrus and entorhinal cortex on the left and on the right in the parahippocampal gyrus. Our study demonstrates asymmetries in different cortical regions of the temporal lobe that can be used as another marker in the postmortem diagnosis of AD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.