Abstract

Plant stem cell niches (SCNs) can be maintained in time through asymmetric cell divisions (ACDs) that allow the production of new cell types while constantly renewing the pools of stem cells (SCs). ACDs in plants require the asymmetric distribution of molecular components inside the cells as well as external asymmetric positional information. These two types of asymmetric information are controlled by inter- and intracellular signalling events. Phosphorylation of proteins is a major intermediate step in these signalling events, serving either as an activator or repressor of signalling, via fast auto- and trans-phosphorylation mechanisms. Whereas protein kinases, which phosphorylate proteins on serine, threonine or tyrosine residues, have been thoroughly studied, less attention has been given to protein phosphatases, which de-phosphorylate their protein targets on these same residues. Phosphatases modulate the activity of signalling pathways by balancing the action of kinases, and are therefore critical in the regulation of ACDs in plants. In this review, we first present the different types of ACDs that operate during Arabidopsis embryonic and post-embryonic development and participate in the construction and maintenance of its root and shoot SCNs; we then give a brief description of the main protein phosphatases so far described in the Arabidopsis genome; and finally discuss their functions toward the regulation of the ACDs introduced in the first part of the paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call