Abstract
The development of a chiral-at-metal iridium(III) complex for the highly efficient catalytic asymmetric transfer hydrogenation of β,β'-disubstituted nitroalkenes is reported. Catalysis by this inert, rigid metal complex does not involve any direct metal coordination but operates exclusively through weak interactions with functional groups properly arranged in the ligand sphere of the iridium complex. Although the iridium complex relies only on the formation of three hydrogen bonds, it exceeds the performance of most organocatalysts with respect to enantiomeric excess (up to 99% ee) and catalyst loading (down to 0.1 mol %). This work hints at an advantage of structurally complicated rigid scaffolds for non-covalent catalysis, which especially relies on conformationally constrained cooperative interactions between the catalyst and substrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.