Abstract

The development of a chiral-at-metal iridium(III) complex for the highly efficient catalytic asymmetric transfer hydrogenation of β,β'-disubstituted nitroalkenes is reported. Catalysis by this inert, rigid metal complex does not involve any direct metal coordination but operates exclusively through weak interactions with functional groups properly arranged in the ligand sphere of the iridium complex. Although the iridium complex relies only on the formation of three hydrogen bonds, it exceeds the performance of most organocatalysts with respect to enantiomeric excess (up to 99% ee) and catalyst loading (down to 0.1 mol %). This work hints at an advantage of structurally complicated rigid scaffolds for non-covalent catalysis, which especially relies on conformationally constrained cooperative interactions between the catalyst and substrates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call