Abstract

β-amino acids are widely used in drug research, and S-3-amino-3-phenylpropionic acid (S-APA) is an important pharmaceutical intermediate of S-dapoxetine, which has been approved for the treatment of premature ejaculation. Chiral catalysis is an excellent method for the preparation of enantiopure compounds. In this study, we used (±)-ethyl-3-amino-3-phenylpropanoate (EAP) as the sole carbon source. Three hundred thirty one microorganisms were isolated from 30 soil samples, and 17 strains could produce S-APA. After three rounds of cultivation and identification, the strain Y1-6 exhibiting the highest enantioselective activity of S-APA was identified as Methylobacterium oryzae. The optimal medium composition contained methanol (2.5g/L), 1,2-propanediol (7.5g/L), soluble starch (2.5g/L), and peptone (10g/L); it was shaken at 220rpm for 4–5 days at 30°C. The optimum condition for biotransformation of EAP involved cultivation at 37°C for 48h with 120mg of wet cells and 0.64mg of EAP in 1ml of transfer solution. Under this condition, substrate ee was 92.1% and yield was 48.6%. We then attempted to use Methylobacterium Y1-6 to catalyze the hydrolytic reaction with substrates containing 3-amino-3-phenyl-propanoate ester, N-substituted-β-ethyl-3-amino-3-phenyl-propanoate, and γ-lactam. It was found that 5 compounds with ester bonds could be stereoselectively hydrolyzed to S-acid, and 2 compounds with γ-lactam bonds could be stereoselectively hydrolyzed to (-)-γ-lactam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call