Abstract

Guided tissue regeneration (GTR) strategies enable periodontal tissue regeneration, generally by providing barrier membranes. However, currently available membranes have limited osteoconductive and antibacterial potential. To address these challenges, we fabricated a new asymmetric barrier membrane. Agarose hydrogel functions as the main body of the barrier membrane. Hollow carbonated hydroxyapatite (CHA) prepared by hydrothermal method, was sedimented in agarose to exhibit an asymmetrical structure. And ε-poly-lysine (ε-PLL) was chosen as an antimicrobial agent to equip the membrane with long-lasting antibacterial activity. With the increased dose of CHA addition, the barrier membrane shows better biocompatibility, and higher mechanical properties. We demonstrated the osteoconductivity and antibacterial properties of the membrane in vitro and in vivo. In summary, our findings suggest that the barrier membrane has good osteoconductive and antibacterial properties, indicating its potential for periodontal tissue engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call