Abstract

Many apparently achiral organic molecules on Earth may be chiral because of random substitution of the 1.11% naturally abundant 13C for 12C in an enantiotopic moiety within the structure. However, chirality from this source is experimentally difficult to discern because of the very small difference between 13C and 12C. We have demonstrated that this small difference can be amplified to an easily seen experimental outcome using asymmetric autocatalysis. In the reaction between pyrimidine-5-carbaldehyde and diisopropylzinc, addition of chiral molecules in large enantiomeric excess that are, however, chiral only by virtue of isotope substitution causes a slight enantiomeric excess in the zinc alkoxide of the produced pyrimidyl alkanol. Asymmetric autocatalysis then leads to pyrimidyl alcohol with a large enantiomeric excess. The sense of enantiomeric excess of the product alcohol varies consistently with the sense of the excess enantiomer of the carbon isotopically chiral compound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.