Abstract

Mutually inhibitory populations of neurons, half-center oscillators (HCOs), are commonly involved in the dynamics of the central pattern generators (CPGs) driving various rhythmic movements. Previously, we developed a multifunctional, multistable symmetric HCO model which produced slow locomotor-like and fast paw-shake-like activity patterns. Here, we describe asymmetric features of paw-shake responses in a symmetric HCO model and test these predictions experimentally. We considered bursting properties of the two model half-centers during transient paw-shake-like responses to short perturbations during locomotor-like activity. We found that when a current pulse was applied during the spiking phase of one half-center, let’s call it #1, the consecutive burst durations (BDs) of that half-center increased throughout the paw-shake response, while BDs of the other half-center, let’s call it #2, only changed slightly. In contrast, the consecutive interburst intervals (IBIs) of half-center #1 changed little, while IBIs of half-center #2 increased. We demonstrated that this asymmetry between the half-centers depends on the phase of the locomotor-like rhythm at which the perturbation was applied. We suggest that the fast transient response reflects functional asymmetries of slow processes that underly the locomotor-like pattern; e.g., asymmetric levels of inactivation across the two half-centers for a slowly inactivating inward current. We compared model results with those of in-vivo paw-shake responses evoked in locomoting cats and found similar asymmetries. Electromyographic (EMG) BDs of anterior hindlimb muscles with flexor-related activity increased in consecutive paw-shake cycles, while BD of posterior muscles with extensor-related activity did not change, and vice versa for IBIs of anterior flexors and posterior extensors. We conclude that EMG activity patterns during paw-shaking are consistent with the proposed mechanism producing transient paw-shake-like bursting patterns found in our multistable HCO model. We suggest that the described asymmetry of paw-shaking responses could implicate a multifunctional CPG controlling both locomotion and paw-shaking.

Highlights

  • We engage in many types of rhythmic motor behaviors in our everyday lives, such as walking, breathing, chewing, etc

  • We suggest that the cat paw-shaking response could be a transient response of the locomotor central pattern generators (CPGs)

  • In our multistable half-center oscillator (HCO) CPG model, we applied perturbations to the locomotor pattern which resulted in a transient paw-shake-like pattern that eventually returned back to the locomotor pattern

Read more

Summary

Introduction

We engage in many types of rhythmic motor behaviors in our everyday lives, such as walking, breathing, chewing, etc. Rhythmic behaviors like these are generally controlled by interneuronal networks called central pattern generators (CPGs) [1,2,3,4]. Many of these behaviors are steady-state and long-lasting, such as walking and breathing. There is experimental evidence from a variety of species supporting the possibility of multifunctional CPGs controlling a variety of different motor behaviors [5,6,7,8,9,10,11,12,13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call