Abstract
AbstractIn this paper, a strategy of asymmetric alkyl and alkoxy substitution is applied to state‐of‐the‐art Y‐series nonfullerene acceptors (NFAs), and it achieves great performance in organic solar cell (OSC) devices. Since alkoxy groups can have a significant influence on the material properties of NFAs, alkoxy substitution is applied to the Y6 molecule in a symmetric manner. The resulting molecule (named Y6‐2O), despite showing improved open‐circuit voltage (Voc), yields extremely poor performance due to low solubility and excessive aggregation properties, a change that is due to the conformational locking effect of alkoxy groups. In contrast, asymmetric alkyl and alkoxy substitution on Y6, yields a molecule named Y6‐1O that can maintain the positive effect of Voc improvement and obtain reasonably good solubility. The resulting molecule Y6‐1O enables highly efficient nonfullerene OSCs with 17.6% efficiency and the asymmetric side‐chain strategy has the potential to be applied to other NFA‐material systems to further improve their performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.