Abstract

Construction of local donor-acceptor architecture is one of the valid means for facilitating the intramolecular charge transfer in organic semiconductors. To further accelerate the interface charge transfer, a ternary acceptor-donor-acceptor (A1 -D-A2 ) molecular junction is established via gradient nitrogen substituting into the polymer skeleton. Accordingly, the exciton splitting and interface charge transfer could be promptly liberated because of the strong attracting ability of the two different electron acceptors. Both DFT calculations and photoluminescence spectra elucidate the swift charge transfer at the donor-acceptor interface. Consequently, the optimum polymer, N3 -CP, undergoes a remarkable photocatalytic property in terms of hydrogen production with AQY405 nm =26.6 % by the rational design of asymmetric molecular junctions on organic semiconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.