Abstract

AbstractFacial image analysis is very useful in many applications such as video compression, talking heads, or biometrics. During the last few years, many algorithms have been proposed in particular for face recognition using classical 2-D images. Face is fairly easy to use and well accepted by people but generally not robust enough to be used in most practical security applications because too sensitive to variations in pose and illumination. One possibility to overcome this limitation is to work in 3-D instead of 2-D. But 3-D is costly and more difficult to manipulate and then ineffective to authenticate people in most contexts. Hence, to solve this problem, we propose a novel face recognition approach that is based on an asymmetric protocol: enrolment in 3-D but identification performed from 2-D images. So that, the goal is to make more robust face recognition while keeping the system practical. To make this 3-D/2-D approach possible, we introduce geometric invariants used in computer vision within the context of face recognition. We report preliminary experiments to evaluate robustness of invariants according to pose variations and to the accuracy of detection of facial feature points. Preliminary results obtained in terms of identification rate are encouraging.KeywordsControl PointFace RecognitionCross RatioGeometric InvariantFacial Feature PointThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call