Abstract

The herein reported visible-light-activated catalytic asymmetric [3+2] photocycloadditions between cyclopropanes and alkenes or alkynes provide access to chiral cyclopentanes and cyclopentenes, respectively, in 63-99 % yields and with excellent enantioselectivities of up to >99 % ee. The reactions are catalyzed by a single bis-cyclometalated chiral-at-metal rhodium complex (2-8 mol %) which after coordination to the cyclopropane generates the visible-light-absorbing complex, lowers the reduction potential of the cyclopropane, and provides the asymmetric induction and overall stereocontrol. Enabled by a mild single-electron-transfer reduction of directly photoexcited catalyst/substrate complexes, the presented transformations expand the scope of catalytic asymmetric photocycloadditions to simple mono-acceptor-substituted cyclopropanes affording previously inaccessible chiral cyclopentane and cyclopentene derivatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.