Abstract

Primary alkyl amines are highly reactive in N-nucleophilic reactions with electrophiles. However, their α-C−H bonds are unreactive towards electrophiles due to their extremely low acidity (pKa ~57). Nonetheless, 1,8-diazafluoren-9-one (DFO) can activate primary alkyl amines by increasing the acidity of the α-amino C−H bonds by up to 1044 times. This makes the α-amino C−H bonds acidic enough to be deprotonated under mild conditions. By combining DFO with an iridium catalyst, direct asymmetric α-C−H alkylation of NH2-unprotected primary alkyl amines with allylic carbonates has been achieved. This reaction produces a wide range of chiral homoallylic amines with high enantiopurities. The approach has successfully switched the reactivity between primary alkyl amines and allylic carbonates from intrinsic allylic amination to the α-C−H alkylation, enabling the construction of pharmaceutically significant chiral homoallylic amines from readily available primary alkyl amines in a single step.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call