Abstract

Abstract We report the first analysis of data from AstroSat/LAXPC observations of Cygnus X-1 in 2016 January. LAXPC spectra reveals that the source was in the canonical hard state, represented by a prominent thermal Comptonization component having a photon index of ∼1.8 and high temperature of kT e > 60 keV along with weak reflection and possible disk emission. The power spectrum can be characterized by two broad lorentzian functions centered at ∼0.4 and ∼3 Hz. The rms of the low-frequency component decreases from ∼15% at around 4 keV to ∼10% at around 50 keV, while that of the high-frequency one varies less rapidly from ∼13.5% to ∼11.5% in the same energy range. The time lag between the hard (20–40 keV) and soft (5–10 keV) bands varies in a step-like manner being nearly constant at ∼50 milliseconds from 0.3 to 0.9 Hz, decreasing to ∼8 milliseconds from 2 to 5 Hz and finally dropping to ∼2 milliseconds for higher frequencies. The time lags increase with energy for both the low and high-frequency components. The event mode LAXPC data allows for flux resolved spectral analysis on a timescale of 1 s, which clearly shows that the photon index increased from ∼1.72 to ∼1.80 as the flux increased by nearly a factor of two. We discuss the results in the framework of the fluctuation propagation model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.