Abstract

Gravitational wave astronomy is established with direct observation of gravitational wave from merging binary black holes and binary neutron stars during the first and second observing run of LIGO and Virgo detectors. The gravitational-wave transient searches mainly categories into two families: modeled and modeled-independent searches. The modeled searches are based on matched filtering techniques and model-independent searches are based on the extraction of excess power from time-frequency representations. We have proposed a hybrid method, called wavegraph that mixes the two approaches. It uses astrophysical information at the extraction stage of model-independent search using a mathematical graph. In this work, we assess the performance of wavegraph clustering in real LIGO and Virgo noises (the sixth science run and the first observing run) and using the coherent WaveBurst transient search as a backbone. Further, we propose a new signal consistency test for this algorithm. This test uses the amplitude profile information to distinguish between the gravitational wave transients from the noisy glitches. This test is able to remove a large fraction of loud glitches, which thus results in additional overall sensitivity in the context of searches for binary black-hole mergers in the low-mass range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call