Abstract

The Astrophysical Research Consortium Telescope Imaging Camera, ARCTIC, is a new optical imaging camera now in use at the Astrophysical Research Consortium (ARC) 3.5m telescope at Apache Point Observatory (APO). As a facility instrument, the design criteria broadly encompassed many current and future science opportunities, and the components were built for quick repair or replacement, to minimize down-time. Examples include a quick change shutter, filter drive components accessible from the exterior and redundant amplifiers on the detector. The detector is a Semiconductor Technology Associates (STA) device with several key properties (e.g. high quantum efficiency, low read-noise, quick readout, minimal fringing, operational bandpass 350-950nm). Focal reducing optics (f/10.3 to f/8.0) were built to control aberrations over a 7.8'x7.8' field, with a plate scale of 0.11 per 0.15 micron pixel. The instrument body and dewar were designed to be simple and robust with only two components to the structure forward of the dewar, which in turn has minimal feedthroughs and permeation areas and holds a vacuum <10-8 Torr. A custom shutter was also designed, using pneumatics as the driving force. This device provides exceptional performance and reduces heat near the optical path. Measured performance is repeatable at the 2ms level and offers field uniformity to the same level of precision. The ARCTIC facility imager will provide excellent science capability with robust operation and minimal maintenance for the next decade or more at APO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.