Abstract

Line intensities and oscillator strengths for the controversial 3C and 3D astrophysically relevant lines in neonlike Fe(16+) ions are calculated. A large-scale configuration-interaction calculation of oscillator strengths is performed with the inclusion of higher-order electron-correlation effects, suggesting that these contributions cannot explain existing discrepancies between theory and experiment. Then, we investigate nonlinear dynamical effects, showing that, for strong x-ray sources, the modeling of the spectral lines by a peak with an area proportional to the oscillator strength is not sufficient. The dynamical effects give a possible resolution of discrepancies of theory and experiment found by recent measurements, which motivates the use of light-matter interaction models also valid for strong light fields in the analysis and interpretation of astrophysical and laboratory spectra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.