Abstract

In this chapter I focus on asking and answering the following questions: (1) What is a black hole? Answer: There are three types of black holes, namely mathematical black holes, physical black holes and astrophysical black holes. An astrophysical black hole, with mass distributed within its event horizon but not concentrated at the singularity point, is not a mathematical black hole. (2) Can astrophysical black holes be formed in the physical universe? Answer: Yes, at least this can be done with gravitational collapse. (3) How can we prove that what we call astrophysical black holes are really black holes? Answer: Finding direct evidence of event horizon is not the way to go. Instead I propose five criteria which meet the highest standard for recognizing new discoveries in experimental physics and observational astronomy. (4) Do we have sufficient evidence to claim the existence of astrophysical black holes in the physical universe? Answer: Yes, astrophysical black holes have been found at least in some galactic binary systems, at the center of almost every galaxy, and as the central engines of at least some long gamma-ray bursts. (5) Will all matter in the universe eventually fall into black holes? Answer: Probably "no", because "naked" compact objects, if they do exist with radii smaller than the radii of event horizons for their masses but are not enclosed by event horizons, can rescue the universe from an eternal death by re-cycling out the matter previously accreted into astrophysical black holes. Finally I also discuss briefly if we need a quantum theory of gravity in order to further understand astrophysical black holes, and what further astronomical observations and telescopes are needed to make further progress on our understanding of astrophysical black holes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call