Abstract

Astronomical instruments currently provide a large amount of data. Nowadays, a large part of these data are image frames obtained with receivers of increasing size. The scan of large astronomical plates using fast microdensitometers gives image frames of over 30000×30000 pixels. More and more often, images are transmitted over a network in order to control the observations, to process the data, and to examine or to fill a data bank. The time taken for archiving, the cost of communication, the available memory given by magnetic tapes, and the limited bandwidth of transmission lines are reasons which lead us to examine the data compression of astronomical images. The astronomical image has the characteristic of being a set of astronomical sources in the sky background whose values are not zero. We are, in fact, only interested in the astronomical sources. Once a suitable detection is made, we generally want a compression without any distorsion. In this paper, we present a method which can be adapted for this purpose. It is based on morphological skeleton transformations. The experimental results show that it can give us an efficient compression. Moreover, the flexibility of choosing a structure element adapted to different images and the simplicity of implementation are other advantages of this method. Because of these characteristics, different compression applications may be treated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.