Abstract

Non-gravitational interaction between two barotropic dark fluids, namely the pressureless dust and the dark energy in a spatially flat Friedmann-Lema\^{i}tre-Robertson-Walker model has been discussed. It is shown that for the interactions which are linear in terms the energy densities of the dark components and their first order derivatives, the net energy density is governed by a second order differential equation with constant coefficients. Taking a generalized interaction, which includes a number of already known interactions as special cases, the dynamics of the universe is described for three types of the dark energy equation of state, namely that of interacting quintessence, interacting vacuum energy density and interacting phantom. The models have been constrained using the standard cosmological probes, Supernovae type Ia data from joint light curve analysis and the observational Hubble parameter data. Two geometric tests, the cosmographic studies and the $Om$ diagnostic have been invoked so as to ascertain the behaviour of the present model vis-a-vis the $\Lambda$-cold dark matter model. We further discussed the interacting scenarios taking into account the thermodynamic considerations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.