Abstract

AbstractPrecision astrometry can yield model-independent distances and velocities for neutron stars. Such measurements can be exploited, for example, to locate neutron star birth sites, establish reference frame ties, model the Galactic electron density distribution, and constrain the astrophysics of supernova explosions. As a case study, I discuss recent some parallax and proper motion measurements, and their scientific implications for supernova core collapse and the velocities of ordinary pulsars versus magnetars. I also outline the calibration techniques that are enabling sub-milliarcsecond astrometry of neutron stars with VLBI. In the short term, systematic surveys and high sensitivity on very long baselines will produce ongoing science dividends from precision astrometry at radio wavelengths. In the longer term, new technology such as focal plane arrays, new telescopes such as the Square Kilometre Array, and synergy with new instruments such as Gaia, LSST, and GLAST, all hold great promise in an upcoming era of microarcsecond astrometry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call