Abstract

If a source star is gravitationally microlensed by a multiple lens system, the resulting light curve can have significant deviations from the standard form of a single lens event. The chance of producing significant deviations becomes important when the separations between the component lenses are equivalent to the combined angular Einstein ring radius of the system. For multiple lens systems composed of more than two lenses, however, this condition is difficult to meet because the orbits of such systems are unstable. Even if events are caused by a multiple lens system with stable orbits where a pair of lenses are closely located and the other component (a third body) has a wide separation from the pair, identifying the lens multiplicity photometrically will be difficult because the event will be identified by either a binary lens event caused by the close pair of lenses or a single lens event caused by the third body. In this paper, we show that if a seemingly binary lens event is followed up astrometrically using future high-precision interferometers, the existence of an additional third body can be identified via a repeating event. We show that the signatures of third bodies can be unambiguously identified from the characteristic distortions they make in the centroid shift trajectories. We also show that owing to the long-range astrometric effect of third bodies, the detection efficiency will be considerable even for third bodies with large separations from their close lens pairs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call