Abstract

Injury to the central nervous system (CNS) either from trauma or due to demyelinating/degenerating diseases results in a typical response of astrocytes, termed astrogliosis. This reaction is characterized by astrocyte proliferation, extensive hypertrophy of nuclei, cell body, and cytoplasmic processes and an increase in immunodetectable glial fibrillary acidic protein (GFAP). GFAP accumulation may cause a physical barrier preventing the reestablishment of a functional environment. Our studies have aimed at modulating astrogliosis by inhibiting or delaying GFAP synthesis in damaged and reactive astrocytes. The present study investigates the use of a recombinant retrovirus expressing antisense GFAP RNA in controlling the response of mechanically injured astrocytes. A 650 bp fragment from the coding region of mouse GFAP cDNA was cloned in the antisense orientation under the control of long terminal repeat (LTR) promoter of Moloney murine leukemia virus. Increase in GFAP as detected by immunocytochemical staining in injured astrocytes was inhibited by treatment with retrovirus expressing antisense GFAP RNA. Also, astrocytes at the site of injury in these scratched cultures did not show cell body hypertrophy compared to control cultures. These observations demonstrate that the increase in GFAP at the site of injury can be inhibited using retroviral treatment and indicate the potential of retrovirus-mediated gene transfer in modulating scar formation in the CNS in vivo. These studies also shed light on the role of GFAP in maintaining the morphology of astrocytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.