Abstract
Among mammalian species, astroglial interlaminar processes are unique features of the primate cerebral cortex. The morphological diversity in the immunocytochemical expression of their cytoskeleton was analyzed. For this purpose, samples from normal human cerebral cortex from autopsy cases were used. While Fractal dimension failed to represent the actual complexity of interlaminar processes, Compression analysis allowed classification of these profiles according to their relative tortuosity. Conversion of Compression values into estimates of membrane surface suggested that profile changes could not only affect the directionality of dynamic events, but also the amount of glial cell membrane exposed to the local neuropil. Terminal segments of interlaminar processes were usually more tightly twisted than the cytoskeleton stalk, and enlarged in aged individuals. If not aberrant structures, these so-called ‘terminal masses’ may provide an additional means to increase local membrane availability. Based on Compression analysis, categories of the geometric variability of the cytoskeleton of cerebral cortex interlaminar glial processes are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.