Abstract
Glutaric (GA) and 3-hydroxyglutaric (OHGA) acids accumulate in glutaric acidemia I (GAI), a neurometabolic disease characterized by acute striatal degeneration and chronic progressive cortical atrophy. To explore the hypothesis that astrocytes are involved in GAI pathogenesis and targets of accumulating metabolites, we determined the effects of GA and OHGA on cultured rat cortical astrocytes. Remarkably, both acids induced mitochondria depolarization and stimulated proliferation in confluent cultures without apparent cell toxicity. Newborn rats injected with GA systemically also showed increased cell proliferation in different brain regions. Most of the proliferating cells displayed markers of immature astrocytes. Antioxidant iron porphyrins prevented both mitochondria dysfunction and increased in vitro and in vivo proliferation, suggesting a role of oxidative stress in inducing astrocytosis. Taken together, the data suggest that mitochondrial dysfunction induced by GA metabolites causes astrocytes to adopt a proliferative phenotype, which may underlie neuronal loss, white matter abnormalities and macrocephalia characteristics of GAI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.