Abstract

1. Two subtypes of astrocytes that expressed distinctly different ion channel complements were identified in primary cultures from rat spinal cord and hippocampus using whole cell patch-clamp techniques. One population of cells expressed voltage-activated Na+ currents and displayed outwardly rectifying I-V relationships; the other group of cells had no detectable Na+ currents and pronounced inwardly rectifying I-V curves. 2. Astrocytes expressing Na+ currents were hyperpolarized (by approximately 7 mV) upon removal of external sodium, suggesting a resting Na+ conductance in these cells. In contrast, cells expressing primarily inwardly rectifying K+ currents, Kir, depolarized (by approximately 4-6 mV) in low-sodium solutions. 3. Removal of external Na+ ions increased the input resistance (189% of control) and reduced the whole cell current amplitude (60% of control at -120 mV) of cells with Kir. The reduction in current amplitude was dose-dependent and became apparent after a 10% reduction of [Na+]0 in 7/7 cells tested. At -120 mV, the effect was near maximal in response to a 50% reduction of [Na+]0. 4. The outward potassium currents of cells expressing Na(+)-currents were unaffected by removal of bath Na+. 5. We conclude that the conductance of glial inwardly rectifying K+ channels is dependent on external sodium ions via a mechanism that does not involve sodium ion permeation or blockade of these channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.